skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wallner, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a measurement of the branching fraction and fraction of longitudinal polarization of B 0 ρ + ρ decays, which have two π 0 ’s in the final state. We also measure time-dependent C P violation parameters for decays into longitudinally polarized ρ + ρ pairs. This analysis is based on a data sample containing ( 387 ± 6 ) × 10 6 ϒ ( 4 S ) mesons collected with the Belle II detector at the SuperKEKB asymmetric-energy e + e collider in 2019–2022. We obtain B ( B 0 ρ + ρ ) = ( 2.8 9 0.22 + 0.23 0.27 + 0.29 ) × 10 5 , f L = 0.92 1 0.025 + 0.024 0.015 + 0.017 , S = 0.26 ± 0.19 ± 0.08 , and C = 0.02 ± 0.1 2 0.05 + 0.06 , where the first uncertainties are statistical and the second are systematic. We use these results to perform an isospin analysis to constrain the Cabibbo-Kobayashi-Maskawa angle ϕ 2 and obtain two solutions; the result consistent with other Standard Model constraints is ϕ 2 = ( 92.6 4.7 + 4.5 ) ° . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. New results are presented on a high-statistics measurement of Collins and Sivers asymmetries of charged hadrons produced in deep inelastic scattering of muons on a transversely polarized LiD 6 target. The data were taken in 2022 with the COMPASS spectrometer using the 160 GeV muon beam at CERN, statistically balancing the existing data on transversely polarized proton targets. The first results from about two-thirds of the new data have total uncertainties smaller by up to a factor of three compared to the previous deuteron measurements. Using all the COMPASS proton and deuteron results, both the transversity and the Sivers distribution functions of the u and d quark, as well as the tensor charge in the measured x range are extracted. In particular, the accuracy of the d quark results is significantly improved. Published by the American Physical Society2024 
    more » « less
  3. A<sc>bstract</sc> We perform the first search forCPviolation in$$ {D}_{(s)}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D s + K S 0 K π + π + decays. We use a combined data set from the Belle and Belle II experiments, which studye+ecollisions at center-of-mass energies at or near the Υ(4S) resonance. We use 980 fb−1of data from Belle and 428 fb−1of data from Belle II. We measure sixCP-violating asymmetries that are based on triple products and quadruple products of the momenta of final-state particles, and also the particles’ helicity angles. We obtain a precision at the level of 0.5% for$$ {D}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D + K S 0 K π + π + decays, and better than 0.3% for$$ {D}_s^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D s + K S 0 K π + π + decays. No evidence ofCPviolation is found. Our results for the triple-product asymmetries are the most precise to date for singly-Cabibbo-suppressedD+decays. Our results for the other asymmetries are the first such measurements performed for charm decays. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. A<sc>bstract</sc> Using data samples of 983.0 fb−1and 427.9 fb−1accumulated with the Belle and Belle II detectors operating at the KEKB and SuperKEKB asymmetric-energye+ecolliders, singly Cabibbo-suppressed decays$$ {\Xi}_c^{+}\to p{K}_S^0 $$ Ξ c + p K S 0 ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ Ξ c + Λ π + , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ Ξ c + Σ 0 π + are observed for the first time. The ratios of branching fractions of$$ {\Xi}_c^{+}\to p{K}_S^0 $$ Ξ c + p K S 0 ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ Ξ c + Λ π + , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ Ξ c + Σ 0 π + relative to that of$$ {\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+} $$ Ξ c + Ξ π + π + are measured to be$$ {\displaystyle \begin{array}{c}\frac{\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(2.47\pm 0.16\pm 0.07\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(1.56\pm 0.14\pm 0.09\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(4.13\pm 0.26\pm 0.22\right)\%.\end{array}} $$ B Ξ c + p K S 0 B Ξ c + Ξ π + π + = 2.47 ± 0.16 ± 0.07 % , B Ξ c + Λ π + B Ξ c + Ξ π + π + = 1.56 ± 0.14 ± 0.09 % , B Ξ c + Σ 0 π + B Ξ c + Ξ π + π + = 4.13 ± 0.26 ± 0.22 % . Multiplying these values by the branching fraction of the normalization channel,$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)=\left(2.9\pm 1.3\right)\% $$ B Ξ c + Ξ π + π + = 2.9 ± 1.3 % , the absolute branching fractions are determined to be$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)=\left(7.16\pm 0.46\pm 0.20\pm 3.21\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)=\left(4.52\pm 0.41\pm 0.26\pm 2.03\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)=\left(1.20\pm 0.08\pm 0.07\pm 0.54\right)\times {10}^{-3}.\end{array}} $$ B Ξ c + p K S 0 = 7.16 ± 0.46 ± 0.20 ± 3.21 × 10 4 , B Ξ c + Λ π + = 4.52 ± 0.41 ± 0.26 ± 2.03 × 10 4 , B Ξ c + Σ 0 π + = 1.20 ± 0.08 ± 0.07 ± 0.54 × 10 3 . The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty in$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right) $$ B Ξ c + Ξ π + π +
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. The COMPASS Collaboration performed measurements of the Drell-Yan process in 2015 and 2018 using a 190 GeV / c π beam impinging on a transversely polarized ammonia target. Combining the data of both years, we present final results on the amplitudes of five azimuthal modulations, which correspond to transverse-spin-dependent azimuthal asymmetries (TSAs) in the dimuon production cross section. Three of them probe the nucleon leading-twist Sivers, transversity, and pretzelosity transverse-momentum dependent (TMD) parton distribution functions (PDFs). The other two are induced by subleading effects. These TSAs provide unique new inputs for the study of the nucleon TMD PDFs and their universality properties. In particular, the Sivers TSA observed in this measurement is consistent with the fundamental QCD prediction of a sign change of naive time-reversal-odd TMD PDFs when comparing the Drell-Yan process with deep inelastic scattering. Also, within the context of model predictions, the observed transversity TSA is consistent with the expectation of a sign change for the Boer-Mulders function. Published by the American Physical Society2024 
    more » « less
  6. We measure the branching fraction and C P -violating flavor-dependent rate asymmetry of B 0 π 0 π 0 decays reconstructed using the Belle II detector in an electron-positron collision sample containing 387 × 10 6 ϒ ( 4 S ) mesons. Using an optimized event selection, we find 125 ± 20 signal decays in a fit to background-discriminating and flavor-sensitive distributions. The resulting branching fraction is ( 1.25 ± 0.23 ) × 10 6 and the C P -violating asymmetry is 0.03 ± 0.30 . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  7. A<sc>bstract</sc> We report measurements of the absolute branching fractions$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)$$, where the latter is measured for the first time. The results are based on a 121.4 fb−1data sample collected at the Υ(10860) resonance by the Belle detector at the KEKB asymmetric-energye+ecollider. We reconstruct one$${B}_{s}^{0}$$meson in$${e}^{+}{e}^{-}\to \Upsilon\left(10860\right)\to {B}_{s}^{*}{\overline{B} }_{s}^{*}$$events and measure yields of$${D}_{s}^{+}$$,D0, andD+mesons in the rest of the event. We obtain$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(68.6\pm 7.2\pm 4.0\right)\%$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(21.5\pm 6.1\pm 1.8\right)\%$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)=\left(12.6\pm 4.6\pm 1.3\right)\%$$, where the first uncertainty is statistical and the second is systematic. Averaging with previous Belle measurements gives$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(63.4\pm 4.5\pm 2.2\right)\%$$and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(23.9\pm 4.1\pm 1.8\right)\%$$. For the$${B}_{s}^{0}$$production fraction at the Υ(10860), we find$${f}_{s}=\left({21.4}_{-1.7}^{+1.5}\right)\%$$. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  8. We measure the branching fraction of the decay B 0 J / ψ ω using data collected with the Belle II detector at the SuperKEKB collider. The data contain ( 387 ± 6 ) × 10 6 B B ¯ meson pairs produced in energy-asymmetric e + e collisions at the ϒ ( 4 S ) resonance. The measured branching fraction B ( B 0 J / ψ ω ) = ( 2.16 ± 0.30 ± 0.14 ) × 10 5 , where the first uncertainty is statistical and the second is systematic, is more precise than previous results and constitutes the first observation of the decay with a significance of 6.5 standard deviations. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  9. We measure the time-integrated C P asymmetry in D 0 K S 0 K S 0 decays reconstructed in e + e c c ¯ events collected by the Belle and Belle II experiments. The corresponding data samples have integrated luminosities of 980 and 428 fb 1 , respectively. The D 0 decays are required to originate from the D * + D 0 π + decay, which determines the charm flavor at production time. A control sample of D 0 K + K decays is used to correct for production and detection asymmetries. The result, ( 1.4 ± 1.3 ( stat ) ± 0.1 ( syst ) ) % , is consistent with previous determinations and with C P symmetry. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  10. We report a measurement of the e + e π + π π 0 cross section in the energy range from 0.62 to 3.50 GeV using an initial-state radiation technique. We use an e + e data sample corresponding to 191 fb 1 of integrated luminosity, collected at a center-of-mass energy at or near the ϒ ( 4 S ) resonance with the Belle II detector at the SuperKEKB collider. Signal yields are extracted by fitting the two-photon mass distribution in e + e π + π π 0 γ events, which involve a π 0 γ γ decay and an energetic photon radiated from the initial state. Signal efficiency corrections with an accuracy of 1.6% are obtained from several control data samples. The uncertainty on the cross section at the ω and ϕ resonances is dominated by the systematic uncertainty of 2.2%. The resulting cross sections in the 0.62–1.80 GeV energy range yield a μ 3 π = [ 48.91 ± 0.23 ( stat ) ± 1.07 ( syst ) ] × 10 10 for the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This result differs by 2.5 standard deviations from the most precise current determination. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available December 1, 2025